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Abstract. The goal of the paper is to study asymptotic behavior of the number of lost messages.
Long messages are assumed to be divided into a random number of packets which are transmitted
independently of one another. An error in transmission of a packet results in the loss of the entire
message. Messages arrive to the M/GI/1 finite buffer model and can be lost in two cases as either at
least one of its packets is corrupted or the buffer is overflowed. With the parameters of the system
typical for models of information transmission in real networks, we obtain theorems on asymptotic
behavior of the number of lost messages. We also study how the loss probability changes if redun-
dant packets are added. Our asymptotic analysis approach is based on Tauberian theorems with
remainder.
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1. Introduction.

1.1. Review of the literature and general description of the system.
Long messages in Internet protocols that have to be transmitted are divided into
small packets. Upon transmission each packet is transformed by providing additional
information related to a given message. Because of the bit errors in transmission of the
packet, the message can be lost. The loss probability of a message plays a significant
role in the evaluation of network performance and design of network topology.

There are a number of papers in which the loss probability of a message has
been studied. Cidon, Khamisy, and Sidi [11] derived recurrence relations for the loss
probabilities of packets in a message giving the numerical results for the M/M/1/n
buffer model. The complexity of recurrence calculations of that paper are O(nm2),
where m is the size of a message and n is the buffer capacity. Considering the same
model, Gurewitz, Sidi, and Cidon [13] obtained another representation for the loss
probability by using the ballot theorem (e.g., Takács [17]). In the framework of
the same model Altman and Jean-Marie [7] give a comprehensive analysis for the
multidimensional generating function of the loss probabilities based on the recurrence
relations of the paper of Cidon, Khamisy, and Sidi [11] and analyze the effect of adding
redundant packets. Studying a slightly more general model with several sources, Ait-
Hellal et al. [6] obtained some asymptotic results and studied the effect of adding
redundancy to the loss probability. The aforementioned papers [6], [7], [11], [13] all
discuss the problem of complexity of calculations as well as the required memory to
store intermediate variables.

In real communication networks the capacity is large. Therefore, asymptotic
analysis of the number of lost messages is necessary. The present paper provides
asymptotic analysis with sequential application to redundancy of the following model.
Assume that each message is divided into a random number of packets each of which
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is forwarded to the buffer. For the ith message denote its random number of packets
by νi. We assume that the sequence νi ≥ 1, i ≥ 1, consists of independently and iden-
tically distributed integer random variables. The interarrival times between messages
have an exponential distribution with parameter λ. The buffer can contain only N
packets; that is, if immediately before the arrival of message of l packets there are
L packets in the buffer, then the message is accepted only if L + l ≤ N ; otherwise
the message of l packets is lost. The loss of a message can also occur if at least one
packet in a message is corrupted. In this case we assume that if there is enough space,
then the message does occupy the buffer, but it is hidden and therefore lost. The
probability that at least one packet in a message is corrupted is denoted by p.

In general loss communication networks, a transmission time typically depends on
the number of packets in a message. To be realistic we must study a general queueing
system with service time depending on batch size. The analysis of such a system
is a hard problem. On the other hand, the model with a fixed number of packets
in a message, leading to the standard M/GI/1/n queueing system, is not realistic.
Therefore, in the following we assume additionally that the random variables νi have
fixed upper and lower bounds νupper and νlower, i.e., P{νlower ≤ νi ≤ νupper} = 1.
This assumption can be considered as a compromise between these two cases. It
has a real application in some communication technologies, especially in optical local
networks, where a number of small messages following the same direction are combined
as one message (bus).1 Outgoing from the local network, the bus continues on its
way being processed by the Internet protocols. When the difference between νupper

and νlower for the messages is not large, then assuming that a transmission time is
independent of the message size seems appropriate.

1.2. Formulation of the model in terms of the queueing theory. In terms
of the queueing theory the model can be described as follows. We assume that mes-
sages arrive to the finite buffer M/GI/1 queue with random number of waiting places
ζ. The input rate is equal to λ, and the service time distribution is B(x) with the
expectation b. By a queueing system with random number of waiting places we mean
the following. We denote

ζ = inf

{
m :

m∑
i=1

νi ≤ N

}
,

and according to the assumption P{νlower ≤ νi ≤ νupper} = 1, there are two fixed
values ζupper and ζlower depending on N , and P{ζlower ≤ ζ ≤ ζupper} = 1.

Let ζ1, ζ2, . . . , be a strictly stationary and ergodic sequence of random variables,
P{ζi = j} = P{ζ = j}, ζlower ≤ j ≤ ζupper. If ξi is the number of messages in
the queue immediately before arrival of the ith message, then the message is lost if
ξi > ζi. Otherwise it joins the queue. We assume that ξ1 = 0.

The existence of the stationary queue-length distribution, i.e.,

P{q̄ = j} = lim
i→∞

P{ξi = j|ξ1 < ∞}, j = 0, 1, . . . , ζupper,(1.1)

is shown in the following. The special case when P{νi = l} = 1 leads to the standard
M/GI/1/n queueing system, where n = �N/l� is the integer part of N/l.

1For example, one of such technologies was developed in Orika Optical Networks Limited, where
the author worked during 2000–2001.
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It is also assumed that each message is marked with probability p. We study the
asymptotic behavior of the loss probability under assumptions that Eζ increases to
infinity and p vanishes. The details of these assumptions are clarified in the following
consideration. The loss probability is the probability that the message is either marked
or lost because of overflowing the queue. We study the cases where the traffic (offered
load) � = λb is less than, equal to, and greater than 1.

1.3. Advantages of the approach and methodology. Our approach is based
on the asymptotic analysis of the loss queueing systems in the earlier paper of the
author (see Abramov [3]). The main method is an application of modern Tauberian
theorems with remainder. For the relevant works devoted to asymptotic analysis of
the loss and controlled systems with Poisson input, see Abramov [1], [2], Tomkó [18],
and other papers. The asymptotic analysis of the GI/M/1/n queueing system was
studied in [4], [9], [10]. The advantages of the approach of the present paper are the
following.

First, our model is more general than the model from the aforementioned papers:
This paper discusses the case of a non-Markovian buffer model where a message con-
tains a random batch of packets, while the aforementioned papers studied a Markovian
model with fixed batch size.

Second, the work in [6], [7], [11], [13] discusses a more difficult problem of consec-
utive losses, remaining in a framework of the standard M/M/1/n queueing system.
The present paper flexibly discusses the stationary losses for a nonstandard queueing
model with the random number of waiting places. That queueing system belongs to
the special class of queueing systems with losses that is exactly defined below.

Third, our asymptotic analysis is much simpler than that of the other papers; our
final results and their representation are simple and clear as well.

The traditional approach to asymptotic analysis, based on the final value theorem
for z transform, enables us to obtain the main term of asymptotic relation and, in
certain cases, a remainder. The modern Tauberian theorems enable us to obtain
stronger asymptotic relations using some additional assumptions. These additional
assumptions are realistic for the queueing systems considered here, and our asymptotic
results are stronger than the earlier asymptotic results obtained for the M/GI/1/n
queueing system with the aid of the final value theorem for z transform (see relation
(4.15) for its comparison with (4.14)). For some other results related to asymptotic
analysis of the M/GI/1/n and GI/M/1/n queueing systems with the aid of the final
value theorem, see the bibliography notes and references in Abramov [1].

1.4. What is the main result in this paper.? The paper contains a number
of theoretical results on the asymptotic behavior of characteristics of the busy period
of the system (section 4) and loss probability (section 5). These theoretical results
are then used to conclude the effect of adding redundant packets in order to decrease
the loss probability.

Although the theoretical results of the paper, related to the cases where the offered
load � < 1, are standard, the conclusion about adding redundancy is extremely simple
and interesting nevertheless. Namely, the stationary loss probability is expressed only
via the probability that there is a corrupted packet in the message. This enables us to
conclude that adding a number of redundant packets can decrease the loss probability
with the rate of geometric progression while � < 1.

Then the case when � is close to 1 is very important for the performance analysis.
For example, it can be a result of adding a number of redundant packets when initially
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� < 1. That is, to achieve a maximum decrease in the loss probability we allow an
increase in the offered load up to the critical value.

Therefore, the results on redundancy, related to the case where � = 1+ε (ε > 0) is
slightly greater than 1, are extremely important. The usefulness of the case � = 1+ε is
that it enables us to obtain more exact conclusions on redundancy based on asymptotic
results with remainder. Then, the usefulness of the purely theoretical case � > 1 is
that it is an intermediate result helping us to study the transient behavior, related to
the case � = 1 + ε for small ε > 0.

1.5. Conclusion on adding redundant packets. The results of the paper
enable us to make conclusions on the effect of adding redundant packets as follows.
Let � denote the offered load of the system before adding a redundant packet, and
let �̆ > � be the value of the offered load after adding a redundant packet. While �̆
remains not greater than 1, adding redundant packets is profitable. It decreases the
loss probability with the rate of a geometric progression. Adding a redundant packet
remains profitable if the value �̆ = 1 + ε, where ε is a small value of a higher order
than p. In some cases adding a redundant packet decreases the loss probability even
when the value ε has the same order as p. These cases are studied in section 6.

1.6. The organization of the paper. The paper is organized as follows. There
are six sections, with the first an introduction. In section 2 we introduce the class of
queueing systems with a random number of waiting places and study the characteris-
tics of the system busy period. The results on the expectations of random variables of
the busy period (the number of processed messages, the number of refused messages,
etc.) are given by Lemma 2.1. In section 3 we present a number of auxiliary results
and the Tauberian theorems with remainder. These results are then used to prove a
number of theorems on the asymptotic behavior of the characteristics of the system
given on a busy period which in turn are given in section 4. Section 5 presents the
results on asymptotic behavior of the loss probabilities under different assumptions.
In section 6 we discuss adding redundancy. The central question here is, How is the
loss probability decreased or increased if we add redundant packets into the message?

2. Characteristics of the system given on a busy period. The aim of this
section is to deduce the explicit representations for characteristics of the system dur-
ing a busy period such as the expected duration of a busy period, expected number
of served and lost customers during a busy period, and so on. The queueing system
described in section 1.2 is not standard, and the explicit representation for its char-
acteristics cannot be obtained traditionally. Therefore, below we introduce a special
class of queueing systems Σ containing the system studied in the paper and described
in section 1.2. It will be shown in this section that the above characteristics are
the same for all queueing systems of the class Σ. Hence, one can take any queueing
system, a representative of class Σ, having a more simple structure than the original
system, and study it instead of the original system.

For the sake of convenience, we denote by S1 the system described in section 1.2.
Let B(x) be the probability distribution function of a processing time (in the queueing
terminology, a service time), and let λ be the parameter of Poisson input. We also
set �j = λj

∫∞
0

xjdB(x), j = 1, 2, . . . , and �1 = �.
In order to study the characteristics of the system S1 we introduce a set of systems

Σ containing S1 as an element. The set Σ is a set of M/GI/1 queueing systems where
λ is the rate of Poisson input, B(x) is the probability distribution function of a service
time, and the family of sequences {ζi} is more general than in S1. Each sequence ζ1,
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ζ2, . . . is a family of identically distributed random variables, governing the rejection
process and having the same distribution as the random variable ζ. If this sequence
is as defined in section 1.2, then we have a description of our system S1. In order to
define the set Σ more exactly, we use the notation for the queueing system S1 and
also introduce the following.

Let ξi denote the number of messages in the system S1 immediately before arrival
of the ith message, ξ1 = 0, and let si denote the number of service completions between
the ith and i + 1st arrivals. It is clear that

ξi+1 = ξi − si + I{ξi ≤ ζi},(2.1)

where the term I{ξi ≤ ζi} indicates that the ith message is accepted, and obviously
si is not greater than ξi + I{ξi ≤ ζi}.

Consider a new queueing system S as above with the Poisson input rate λ and the
probability distribution function of a service B(x), but with the sequence ζ̃1, ζ̃2, . . . .

Here we assume that the sequence {ζ̃i} is an arbitrary dependent sequence of random
variables consisting of identically distributed random variables as the random variable
ζ. Let ξ̃i denote the number of messages immediately before arrival of the ith message
(ξ̃1 = 0), and let s̃i denote the number of service completions between the ith and
i+1st arrivals. Thus, we assume that the initial conditions of both queueing systems
S1 and S are the same: ξ1 = ξ̃1.

Analogously to (2.1) we have

ξ̃i+1 = ξ̃i − s̃i + I{ξ̃i ≤ ζ̃i}.(2.2)

Definition. We say that the queueing system S belongs to the set Σ of queueing
systems if Eξ̃i = Eξi, Es̃i = Esi, and P{ξ̃i ≤ ζ̃i} = P{ξi ≤ ζi} for all i ≥ 1.

Consider an example of queueing systems belonging to the set Σ, where the se-
quence {ζ̃i} is strictly stationary but not ergodic. The example is a queueing system

with ζ̃1 = ζ̃2 = . . . , which we denote by S2. The example below is artificial rather
than realistic, however, its main goal is to help us to show the existence of necessary
stationary queue-length probabilities for the queueing system S1 and to obtain the
explicit representations for those probabilities as well.

For S2 we find by induction for all i ≥ 1 that

Es̃i = Esi,(2.3)

P{ξ̃i ≤ ζ̃i} = P{ξi ≤ ζi},(2.4)

and

Eξ̃i − Es̃i + P{ξ̃i ≤ ζ̃i} = Eξi − Esi + P{ξi ≤ ζi}.(2.5)

Relations (2.3)–(2.5) show that the queueing system S2 ∈ Σ. It follows from the
definition that if the stationary loss probability exists for at most one of the queueing
systems S ∈ Σ, then it exists for all queueing systems of Σ and it is the same. Then,
the properties of the queueing system S2 enable us to conclude similar properties of all
queueing systems belonging to the set Σ, including S1. For example, it is not difficult
to show that the expected busy period is the same for all queueing systems of the
class Σ. Indeed, let Ã, S̃, and R̃ denote the number of arrived, served, and refused
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customers (because of overflowing the buffer) during a busy cycle C̃, respectively. We
have the equations

EÃ = ES̃ + ER̃ = λEC̃,(2.6)

bES̃ = EC̃ − 1

λ
,(2.7)

where b is the expected service time. Since the loss probability is the same for all
queueing systems S ∈ Σ, then the fraction ER̃/EC̃ is the same for all S ∈ Σ as well.
Therefore, it follows from equations (2.6) and (2.7) that the expected duration of a

busy period, ET̃ = EC̃ − λ−1, is the same for all queueing systems S ∈ Σ.
Recall that for queueing system S2 we have ζ̃1=ζ̃2 = . . . , i.e., the random variable

ζ is modeled once at the initial time moment. Let T̃ζ denote a busy period of this
system. Then, the total expectation formula enables us to write

ET̃ζ =

ζupper∑
K=ζlower

ETKP{ζ = K},(2.8)

where ETK is the expected busy period of an M/GI/1/K queueing system with the
same sequence of interarrival and service times, and P{ζ = K} = P{ζj = K}. In
turn, the expectation ETK is determined from the following recurrence relation:

ETK =

K∑
j=0

πjETK−j+1, ET0 = b, πi =

∫ ∞

0

e−λx (λx)i

i!
dB(x)(2.9)

(see Tomkó [18], Cooper and Tilt [12], and Abramov [1], [3]), where b is the expectation
of a service time.

Now, let Tζ denote a busy period for the queueing system S1. According to the

above conclusion that ETζ = ET̃ζ , and in view of (2.8), we have

ETζ =

ζupper∑
K=ζlower

ETKP{ζ = K},(2.10)

where ETK are determined from (2.9).
Along with the notation Tζ for the busy period of the system S1, we let Iζ be an

idle period and let Pζ , Mζ , Rζ be the characteristics of the system on a busy period:
the number of processed messages, the number of marked messages, the number of
refused messages, respectively. Here and later we use the following terminology. The
term refused message is used for the case of overflowing the buffer. Then the term
lost message is used for the case where a message is either refused or marked. The
number of lost messages during a busy period is denoted by Lζ . Analogously, by loss
probability we mean the probability when an arrival message is lost.

Lemma 2.1. For the expectations ETζ , EPζ , EMζ , ERζ we have the following
representations:

EPζ =
λ

�
ETζ ,(2.11)

EMζ = pEPζ ,(2.12)
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ERζ = (�− 1)EPζ + 1.(2.13)

Proof. Relations (2.11) and (2.12) follow immediately from Wald’s identity. In
order to prove (2.13) note that the number of arrivals during a busy cycle equals
the number of processed messages during a busy period plus the number of refused
messages during a busy period (see relation (2.6)). According to Wald’s identity the
expected number of arrivals during a busy cycle equals λ(ETζ + EIζ). Therefore
taking into account that EIζ = λ−1 from (2.11), we have

ERζ = (�− 1)EPζ + 1,

and the result is proved.
For the alternative proof of (2.13) see Abramov [3]. (See also the proof in [5].)

3. Auxiliary results. Tauberian theorems with remainder. It is seen
from relations (2.10) and (2.9) and Lemma 2.1 that the characteristics of the system
during a busy period can be studied in a framework of the recurrence relation

Qk =

k∑
i=0

riQk−i+1,(3.1)

where ri are nonnegative numbers, r0 + r1 + · · · = 1, r0 > 0, and Q0 �= 0 is an
arbitrary real number. Below we recall a number of results on asymptotic behavior
of that sequence (3.1).

The known results on representation (3.1) are asymptotic theorems by Takács
[17]. Lemma 3.1 below joins two results by Takács: Theorem 5 of [17, p. 22] and
relation (35) [17, p. 23]. The results of Takács [17] were then developed by Postnikov
[14, sect. 25], [15, sect. 25] (see Lemma 3.2 and Lemma 3.3 below).

Let r(z) =
∑∞

i=0 riz
i, |z| ≤ 1, γm = r(m)(1 − 0) = limz↑1 r

(m)(z) (r(m)(z) is the
mth derivative of r(z)). Note that if we denote Q(z) =

∑∞
i=0 Qiz

i, then it follows
from (3.1) that

Q(z) =
Q0r(z)

r(z) − z
.

Lemma 3.1 (Takács [17]). If γ1 < 1, then

lim
k→∞

Qk =
Q0

1 − γ1
.(3.2)

If γ1 = 1 and γ2 < ∞, then

lim
k→∞

Qk

k
=

2Q0

γ2
.(3.3)

If γ1 > 1, then

lim
k→∞

(
Qk − Q0

δk[1 − r′(δ)]

)
=

Q0

1 − γ1
,(3.4)

where δ is the least (absolute) root of the equation z = r(z).
Lemma 3.2 (Postnikov [14], [15]). Let γ1 = 1, γ3 < ∞. Then as k → ∞,

Qk =
2Q0

γ2
k + O(log k).(3.5)
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Lemma 3.3 (Postnikov [14], [15]). Let γ1 = 1, γ2 < ∞ and r0 + r1 < 1. Then as
k → ∞,

Qk+1 −Qk =
2Q0

γ2
+ o(1).(3.6)

4. Asymptotic results for characteristics of the system during a busy
period. This section provides a number of results on asymptotic behavior of charac-
teristics of the system. The first three theorems are related to the case as N increases
to infinity, where the cases � < 1, � = 1, and � > 1 are considered. The next two
theorems discuss the case when the value � is close to the critical value 1, and as
N → ∞, it tends to 1. The last theorem of this section, Theorem 4.6, provides the
asymptotic result for the special case when the number of packets in a message is a
constant value.

Let us now study the asymptotic behavior of the expectations EPζ , EMζ , and
ERζ . We write ζ = ζ(N), pointing out the dependence on parameter N . As the buffer
size N increases to infinity, both ζlower and ζupper tend to infinity, and together with
them, ζ(N) a.s. tends to infinity. Then we have the following.

Theorem 4.1. If � < 1, then

lim
N→∞

EPζ(N) =
1

1 − �
.(4.1)

If � = 1 and �2 < ∞, then

lim
N→∞

EPζ(N)

Eζ(N)
=

2

�2
.(4.2)

If � > 1, then

lim
N→∞

[
EPζ(N) −

1

Eϕζ(N)[1 + λβ′(λ− λϕ)]

]
=

1

1 − �
,(4.3)

where β(z) =
∫∞
0

e−zxdB(x) and ϕ is the least (absolute) root of functional equation
z − β(λ− λz) = 0.

Proof. From (2.9), (2.10), and (2.11) we have

EPζ =

ζupper∑
K=ζlower

EPKP{ζ = K},

where

EPK =

K∑
j=0

πjEPK−j+1, EP0 = 1,

πj =

∫ ∞

0

e−λx (λx)j

j!
dB(x).

Then applying Lemma 3.1 we have the following. In the case � < 1, taking into
account that ζ(N)

a.s.→∞ as N → ∞, we obtain

lim
N→∞

EPζ(N) = lim
N→∞

EPN =
1

1 − �
.
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Relation (4.1) is proved.
In the case �2 < ∞ and � = 1 we have

lim
N→∞

EPζ(N)

N
= lim

N→∞

1

N

ζupper∑
K=ζlower

P{ζ(N) = K}EPK

= lim
N→∞

1

N

ζupper∑
K=ζlower

KP{ζ(N) = K} 2

�2
=

2

�2
lim

N→∞

Eζ(N)

N
.

Therefore,

lim
N→∞

EPζ(N)

Eζ(N)
=

2

�2
,

and relation (4.2) is proved.
In the case � > 1 for large N we obtain

EPζ(N) =

ζupper∑
K=ζlower

P{ζ(N) = K}EPK

=

ζupper∑
K=ζlower

P{ζ(N) = K} 1

ϕK [1 + λβ′(λ− λϕ)]
+

1

1 − �
+ o(1)

=
1

Eϕζ(N)[1 + λβ′(λ− λϕ)]
+

1

1 − �
+ o(1).

Therefore,

lim
N→∞

[
EPζ(N) −

1

Eϕζ(N)[1 + λβ′(λ− λϕ)]

]
=

1

1 − �
,

and relation (4.3) is proved. Theorem 4.1 is completely proved.
Theorem 4.2. If � = 1 and �3 < ∞, then

EPζ(N) =
2

�2
Eζ(N) + O(logN).(4.4)

Proof. Applying Lemma 3.2, for large N we have

EPζ(N) =

ζupper∑
K=ζlower

P{ζ(N) = K}EPK

=

ζupper∑
K=ζlower

KP{ζ(N) = K} 2

�2
+ O{E[log ζ(N)]}
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=
2

�2
Eζ(N) + O{E[log ζ(N)]}

=
2

�2
Eζ(N) + O(logN).

and we obtain relation (4.4). Theorem 4.2 is proved.
In turn for ERζ we have the following theorem.
Theorem 4.3. If � < 1, then

lim
N→∞

ERζ(N) = 0.(4.5)

If � = 1, then for all N ≥ 0

ERζ(N) = 1.(4.6)

If � > 1, then

lim
N→∞

[
ERζ(N) −

�− 1

Eϕζ(N)[1 + λβ′(λ− λϕ)]

]
= 0.(4.7)

Proof. The proof of this theorem is analogous to that of the proof of Theorem
4.1. It follows by application of Lemma 3.1 and relation (2.13) of Lemma 2.1.

Theorem 4.4. Let � = 1 + ε, ε > 0, and εζ(N) → C > 0 a.s. as ε → 0
and N → ∞. Assume also that �3 = �3(N) is a bounded sequence, and there exists
�̃2 = limN→∞ �2(N). Then

EPζ(N) =
e2C/�̃2 − 1

ε
+ O(1),(4.8)

ERζ(N) = e2C/�̃2 + o(1).(4.9)

Proof. It was shown in Subhankulov [16, p. 326], that if � = 1 + ε, ε > 0, ε → 0,
�3(N) is a bounded sequence, and there exists �̃2 = limN→∞ �2(N), then

ϕ = 1 − 2ε

�̃2
+ O(ε2).(4.10)

Applying (4.10) after some algebra we have

1 + λβ′(λ− λϕ) = ε + O(ε2).(4.11)

Then the statements of the theorem follow by applying expansions (4.10) and
(4.11) to (4.3) and (4.7).

Theorem 4.5. Let � = 1 + ε, ε > 0, and εζ(N) → 0 as ε → 0 and N →
∞. Assume also that �3 = �3(N) is a bounded sequence, and there exists �̃2 =
limN→∞ �2(N). Then

EPζ(N) =
2

�̃2
Eζ(N) + O(1),(4.12)

ERζ(N) = 1 + o(1).(4.13)
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Proof. The results follow by expanding (4.8) and (4.9) for small C.
Special case. If each message contains the same number of packets, say l, then we

have the usual M/GI/1/n queueing system, where n = �N/l� is the integer part of
N/l. For that queueing system all the results in Theorems 4.1–4.5 hold, by replacing
ζ(N) (or Eζ(N)) by n.

For example, asymptotic relation (4.7) appears as

lim
n→∞

(
ERn − �− 1

ϕn[1 + λβ′(λ− λϕ)]

)
= 0.(4.14)

Notice that using the final value theorem for z transform, Azlarov and Tahirov
[8] obtain the estimation

ERn =
�− 1

ϕn[1 + λβ′(λ− λϕ)]

[
1 + O

( 2ϕ

1 + ϕ

)n]
,(4.15)

weaker than (4.14).
The theorem below is related to the case of the usual queueing systems only, when

the number of packets in a message is fixed. Namely, we have the following.
Theorem 4.6. If � = 1 and �2 < ∞, then

EPn+1 − EPn =
2

�2
+ o(1), n → ∞,(4.16)

where the index n + 1 says that Pn+1 is the number of processed messages during a
busy period of the M/GI/1/n + 1 queueing system.

Proof. The result will follow from Lemma 3.3 if we show that β(λ)− λβ′(λ) < 1.
Taking into account that for each λ > 0,

∞∑
i=0

(−λ)i

i!
β(i)(λ) =

∞∑
i=0

∫ ∞

0

e−λx (λx)i

i!
dB(x)(4.17)

=

∫ ∞

0

∞∑
i=0

e−λx (λx)i

i!
dB(x) = 1,

and all terms

πi =
(−λ)i

i!
β(i)(λ)

are nonnegative, from (4.17) we find that

β(λ) − λβ′(λ) ≤ 1.(4.18)

Thus, the required statement will be proved if we show that for some λ0 > 0 the
equality

β(λ0) − λ0β
′(λ0) = 1(4.19)

is not a case. Indeed, since the function β(λ) − λβ′(λ) is an analytic function, then
according to the maximum absolute value principle for analytic functions, β(λ) −
λβ′(λ) = 1 holds for all λ > 0. Therefore identity (4.19) means that πi = 0 for all
i ≥ 2 and for all λ > 0. Therefore, (4.19) is valid if and only if β(λ) is a linear function,
i.e., β(λ) = c0 + c1λ, c0 and c1 are some constants. However, since |β(λ)| ≤ 1 we
obtain c0 = 1 and c1 = 0, and β(λ) ≡ 1. This is the trivial case where the probability
distribution function B(x) is concentrated in point 0. Therefore (4.19) is not a case,
and β(λ) − λβ′(λ) < 1. The theorem is proved.
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5. Asymptotic theorems for the loss probabilities. In this section we study
the asymptotic behavior of the loss probability by using renewal arguments. The
results of this section correspond to those of the previous section. We discuss the
behavior of the system for the same cases as N → ∞, as well as when the parameter
ρ is close to the critical value 1 and tends to 1 as N → ∞. The theorems of this
section are important for our conclusion on adding redundancy, which is given in the
next section.

According to renewal arguments the loss probability is determined as

Πζ =
ELζ

ERζ + EPζ
=

ERζ + EMζ

ERζ + EPζ
=

ERζ + pEPζ

ERζ + EPζ
.(5.1)

(Recall that Lζ is the number of lost messages during a busy period.)
Theorem 5.1. If � < 1

lim
N→∞

Πζ(N) = p.(5.2)

(Recall that p is the probability that a message is erroneous because one of its
packets is corrupted.)

Limiting relation 5.2 is also valid when � = 1 and �2 < ∞.
If � > 1, then

Πζ(N) =
p + �− 1

�

(�− 1) + p[1 + λβ′(λ− λϕ)]Eϕζ(N)

(�− 1) + [1 + λβ′(λ− λϕ)]Eϕζ(N)
+ o(Eϕζ(N)).(5.3)

Proof. The proof follows from Theorems 4.1 and 4.3.
Theorem 5.2. If � = 1 and �3 < ∞, then as N → ∞

Πζ(N) = p +
(1 − p)�2

2Eζ(N)
+ O

( logN

N2

)
.(5.4)

Proof. From (5.1) we have

Πζ(N) =
ERζ(N)

ERζ(N) + EPζ(N)
+

pEPζ(N)

ERζ(N) + EPζ(N)
(5.5)

=
1

1 + EPζ(N)
+

pEPζ(N)

1 + EPζ(N)
.

As N → ∞ from Theorem 4.2 we obtain

1

1 + EPζ(N)
=

�2

2Eζ(N)
+ O

( logN

N2

)
,(5.6)

pEPζ(N)

1 + EPζ(N)
= p− p�2

2Eζ(N)
+ O

( logN

N2

)
.(5.7)

Combining these two asymptotic relations (5.6) and (5.7) we obtain the statement of
Theorem 5.2. Theorem 5.2 is proved.
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Note. Under assumptions of Theorem 5.2 assume additionally that p → 0. If
pN → C > 0, then

Πζ(N) =
C

N
+

�2

2Eζ(N)
+ O

( logN

N2

)
.

If pN → 0, then

Πζ(N) =
�2

2Eζ(N)
+ O

(
p +

logN

N2

)
.

The theorem below also assumes that p → 0. Our result here is the following.
Theorem 5.3. Let � = 1 + ε, ε > 0, and εζ(N) → C > 0 as ε → 0 and N → ∞,

and p → 0. Assume also that �3 = �3(N) is a bounded sequence, and there exists
�̃2 = limn→∞ �2(N).

(i) If p/ε → D ≥ 0, then we have

Πζ(N) =

(
D +

e2C/�̃2

e2C/�̃2 − 1

)
ε + o(ε).(5.8)

(ii) If p/ε → ∞, then we have

Πζ(N) = p + O(ε).(5.9)

Proof. In the case (i) we have

pEPζ(N) + ERζ(N) = (D + 1)e2C/�̃2 −D + o(1),(5.10)

and

EPζ(N) + ERζ(N) =
e2C/�̃2 − 1

ε
+ O(1).(5.11)

Therefore from (5.10) and (5.11) we have

Πζ(N) =

(
D +

e2C/�̃2

e2C/�̃2 − 1

)
ε + o(ε),

and relation (5.8) is proved.
In the case (ii) we have

pEPζ(N) + ERζ(N) =
pc

ε
+ O(1),(5.12)

and

EPζ(N) + ERζ(N) =
c

ε
+ O(1),(5.13)

where c = exp(2C/�̃2)/(exp(2C/�̃2) − 1). Relation (5.9) follows.
Theorem 5.4. Let � = 1 + ε, ε > 0, and εζ(N) → 0 as ε → 0 and N → ∞,

and p → 0. Assume also that �3 = �3(N) is a bounded sequence, and there exists
�̃2 = limn→∞ �2(N).
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(i) If p/ε → D ≥ 0, then we have

Πζ(N) = p +
�̃2

2Eζ(N)
+ o

( 1

N

)
.(5.14)

(ii) If p/ε → ∞, then we have (5.9).
Proof. The proof of (5.14) follows by expanding (5.8) for small C. The proof in

case (ii) trivially follows from (5.12) and (5.13).
Special case. In the case where each message contains exactly l packets, n =

�N/l�, we obtain the following:
Theorem 5.5. If � = 1 and �2 < ∞, then as n → ∞

Πn+1 − Πn =

1
n(n+1)

2
�2

(p− 1)(
2
�2

+ 1
n+1

)(
2
�2

+ 1
n

) + o
( 1

n2

)
.(5.15)

Proof. The proof follows by applying Theorem 4.5 and taking into account the
fact that ERn = 1 for all n ≥ 0 (see [3] or Lemma 2.1).

6. Adding redundant packets. We now investigate the effect of adding redun-
dant packets. We assume that adding a redundant packet to the message decreases
the probability p that a message is corrupted and increases the offered load and the
number of packets in a message. The new parameters of the system after adding a
redundant packet are denoted by adding the symbol ˘ above. For example, p̆ is a
probability that a message contains a corrupted packet and �̆ is the offered load. It
follows from Theorem 5.1 that if �̆ ≤ 1 the stationary loss probability coincides with
p̆. This means that if adding a redundant packet to the message decreases the prob-
ability p by γ times, then the same effect is achieved with the loss probability. Thus,
adding a number of redundant packets while � < 1 can decrease the loss probability
geometrically.

In the case where both � > 1 and �̆ > 1, adding a redundant packet to the message
changes the stationary loss probability to approximately

�(p̆ + �̆− 1)

�̆(p + �− 1)
.

In practice the values p and p̆ are small, and even if adding redundant packets can
slightly decrease the stationary loss probability, the effect of that action is not con-
siderable.

The case where � < 1 and �̆ > 1 is especially interesting if �̆ = 1 + δ, and δ is a
small value. For example, if δ is so small that both δζ(N) and δ/p are also negligible,
then a redundant packet decreases the loss probability by approximately the same
amount as in the case when both � < 1 and �̆ < 1. However, if δ is of the same
order as p or 1/ζ(N), then the special analysis based on the corresponding cases of
Theorems 5.3 and 5.4 is necessary. Here we do not provide the details.

Let us consider the cases when both � > 1 and �̆ > 1, where � = 1 + ε and
�̆ = 1 + ε̆, and ε and ε̆ are small values as in Theorem 5.3, both satisfying (i). Then
the stationary loss probability is changed to approximately

e2C/�̃2 − 1

e2C̆/�̆2 − 1

(e2C̆/�̆2 − 1)p̆ + e2C̆/�̆2 ε̆

(e2C/�̃2 − 1)p + e2C/�̃2ε
(6.1)

times.
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For the sake of simplicity let us assume that C̆/�̆2 = C/�̃2. Then (6.1) reduces to

(e2C/�̃2 − 1)p̆ + e2C/�̃2 ε̆

(e2C/�̃2 − 1)p + e2C/�̃2ε
.(6.2)

If we assume that

p− p̆ =
e2C/�̃2

e2C/�̃2 − 1
(ε̆− ε),

then the stationary loss probability remains at approximately the same value, and if

p− p̆ >
e2C/�̃2

e2C/�̃2 − 1
(ε̆− ε),

then the stationary loss probability decreases, otherwise if

p− p̆ <
e2C/�̃2

e2C/�̃2 − 1
(ε̆− ε),

then the stationary loss probability increases.
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